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Resonant transmission of a soliton across an interface between two Toda lattices
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The transmission of a single soliton is investigated numerically across an interface between two Toda lattices
which are connected by a harmonic spring. We find that a resonant transmission of the soliton occurs when the
spring constant of the harmonic spring is adjusted properly. Furthermore, when the amplitude of the incident
soliton is large, the soliton transmission coefficient exhibits a local minimum which is due to an emergence of
localized waves around the harmonic spring. We propose an experimental test of the results by using a
nonlinearLC circuit.
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In the past decades various aspects of the soliton havg,(u,)
been investigated and the application of the soliton has been
developed on many fields. One of the most important appli- é[exp(— bu,) +bu,— 1] forn<-1andn=1,
cations is the optical soliton communication in optical fibers b
[1]. In the realistic optical soliton communication system, the 5
soliton propagates through several fiber segments joined by a EKUn forn=0,
fiber splice and the soliton loses its own energy at the inter-
faces between the fiber segmef2$ When a soliton passes 3)

an interface between two segments which support the solizhearek is a spring constant of the harmonic spritbgis a

ton, the soliton is scattered by the interface and the transmi%ontrolling parameter of the nonlinearity aati represents a

tance O.f the soliton yvould.shnnk. . .. spring constant of the Toda springs.
In this paper, we investigate numerically the transmission We introduce dimensionless variables defined by
of a soliton across an interface between nonlinear media. We

treat the Toda lattice as a representative nonlinear medium ab\*? b\ _

which supports the propagation of soliton. It should be noted L Pn= ma P Qn=Dbap, (4)
that the propagation of the soliton in the Toda lattice can be

realized by a nonlineakC circuit [3,4] and our numerical wherer is the dimensionless time. The equation of motion is
results can be tested experimentally as discussed later. Weduced to
use a harmonic spring for a connector of the two Toda lat-

T=

m

2
tices. For simplicity, we consider two identical Toda lattices. aQ__ i[cI)n(Un) + @, (U, )], (5)
The harmonic spring is not suited for the propagation of the dr? dQn
soliton and can be interpreted as an impurity. It is known that
localized waves can exist at a light mass impurity or a strong exp-Uy)+U,-1 forn<-1landn=1,
coupling impurity in a harmonic lattice and the Toda lattice ¢ (U,)=11 )
[5,6]. We show that the localized waves also exist at the EKU“ forn=0,
harmonic spring in our model. We try to enhance the trans-
mittance of the incident soliton by controlling the property of (6)

the harmonic spring. It is found that there is a resonant trans: _ - _
mission of the soliton for each amplitude of the incidenﬁNhereK_K/(ab) andUy=Qun:1~ Qn
soliton.

We consider two Toda latticel’] connected by a har- U,= In{1+w§ sech[ko(n = Nng) = w71} =0, (7)
monic spring. The Hamiltonian of our model is given by

At time =0, we prepare a single-soliton

as an incident wavéFig. 1), wherek, is regarded as a wave

p2 number of the solitonwy=sinhk, and ny denotes the loca-

H=>, {—” + ¢n(un)] (1) tion of the soliton atr=0. We setn,<0 so that the incident
n L2m soliton is at far left from the harmonic spring. The energy of

Un = On+1~ Gn» (2 A—— n=—2 -1 0 1 2 3

wherep, and g, are the momentum and displacement of a Todalattics @ monicspring | U2 Atioe

particle on siten, respectively, andn is the mass of the

particle. ¢, is the interaction potential between the particles FIG. 1. The perspective of an incident soliton on two Toda
on sitesn andn+1 given by lattices connected by a harmonic spring.
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the incident soliton normalized bg/b is given by

Ey = 2(sinhkg coshkg — ko) . (8)

When the incident soliton passes the harmonic spring, the
incident wave is divided into three waves: transmitted, re-
flected and localized waves. The transmitted waves consist
of a large soliton at the front and many small waves follow-
ing it; we call them the frontier soliton and ripples, respec-
tively. We use the frontier soliton transmission coefficient
[8,9] given by

Tl = E1/E0, (9)

as a measure of transmission, whexeis the energy of the
frontier soliton. In order to investigate the localized waves
around the harmonic spring, we define the temporal localized
energy by

3
L(n= 2 ha(7), (10) FIG. 2. The spatiotemporal evolution of energy densityr)
n=-2 which is normalized by total energy.is dimensionless time. The

. - . wave numbeik, of the incident soliton iky=2.5. The spring con-
where the maximum and minimum lattice numbers are S€ziantsx of the harmonic spring aré) «=38.54 andb) x=7.776.

lected so that.(7) does not fluctuate for largeandh,(7) is

the normalized energy density given by chose the spring constart properly, the incident soliton

hn(7) = [P2+ ®(Uy) + D1 (Up_) J(2Ey). (11)  completely passes the harmonic spring.
. . . . We obtainedr, for various spring constants of the har-
As is shown in the following numerical resultE(7) ap- monic spring, keeping the wave numbey of the incident
proaches an asymptotic value for largeand we define a  gqjiton fixed. Figure 3 shows the dependence of; for
localized energy. by the asymptotic value df(7). We also ko=1, 1.5, 2 and 2.5. It can be seen from this figure that
define a reflected energyand an energy of the rippl&$ by has a maximum as a function af The maximal value is

asymptotic values of T,=1; in other words, there are no reflected waves and no
-3 localized waves and the incident soliton completely passes
RD= > hn(7), (12) through the interface. We can regard this as a resonance be-
n=left end tween the soliton and the harmonic spring, which occurs at
the spring constant of the harmonic spring chosen properly
right end for eachk,. It can also be seen from Fig. 3 that whign
Ti(n) = [ > hn(T)] - Ty, (13 =1.5,T, has a local minimum as a function &f We show
n=4 later that the local minimum is due to emergence of the lo-

respectively. Since the total energy is a conserved quantitfalizeéd waves around the harmonic spring. We note that in

the summation of the normalized energy denityr) is con- the limit of small, the particle at site 0 is disconnected from
served and the following sum rule the other side of the system. In this case the incident soliton

is reflected completely and; vanishes atk=0 since the
T,+L+R+T,;=1, (14

1

is satisfied. We investigate these quantities for various sets of
parameters in the following discussion.

We integrate Eq(5) numerically using a third order bilat- 08
eral symplectic algorithnj10]. We set integration stepr
=0.01 so that total energy does not deviate from the value of 0.6
the initial state. We impose fixed boundary conditions at both =
ends of entire sites. Since we prepare a sufficiently long lat- 0.4r
tice and finish the numerical calculation before waves reach
the end of the lattice, the boundary condition does not affect 0.2
the results. I

In Fig. 2, we show the normalized energy densityr) as fo1 03 1 10 100 1000
a function ofn and 7 for the spring constant of the harmonic o
spring«=(a) 38.54 andb) 7.776, keeping the wave number  FiG. 3. The frontier soliton transmission coefficieft as a
of the incident solitork,=2.5 fixed. Figure @) shows that function of the spring constant of the harmonic spring in the
the incident soliton is divided into frontier soliton, ripples, logarithmic scale. The wave numbers of the incident soliton are
localized wave and reflected wave. In FighR since we  ky=1(—), 1.5--), 2(---) and 2.5- - -).
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FIG. 5. The temporal localized energyr) is plotted as a func-
tion of dimensionless time for k=3(—) and 3@---). The wave
number of the incident soliton ig=2.5.

FIG. 4. The spring constanig,,y Of the harmonic spring at the
maximum ofT; (@) are plotted as a function of the wave numkgr
of the incident soliton. The solid curve is the fit by H§5). The

broken curve is the approximant given b 8). - .
PP g y E9) betweenr=40 and 50 indicates that the soliton passes the

icl _ beh ; bound it harmonic spring. As can be seen from this figuré;) does
phartlcr;a athsm(ajo_ i al‘_’e$ a?la reeh oun f"‘rly con !t'on'ooﬂot change significantly when=80 and we conclude that
the other hand, In the limit of large, the particles at sites 0 gi51y16 |ocalized waves exist for certain values of parameters

?nd 1 atl_rel strgnrg]]ly connecte(rj] with eact:% other. Smhce thesg our model. We note thdt(7) for other « andk, behaves
fﬂ?tep::?neiotiec \%i :ZSOT:Zn Eivgegiriln 'E:;ap%roac esa similarly. Therefore we can use the asymptotic valué @
ymp 9- 2. as the localized energy.

We denote thex at the maximum of; by kpax The Kmax . . .

; . X7 We show the localized enerdy the frontier soliton trans-
depends oer ar_1d is plotted .agalns‘to in Fig. 4. It can be mission coefficient,, the reflected energi® and the energy
seen from this figure that,,, increases with the increase of f the ripplesT, as functions of for ky=2.5 in Fig. 6. Since
ko. The numerical result can be well fitted by a stretched? , " : A
exponential function: there is the sum rul€l4), the above four quantities are not

P ' independent. The frontier soliton transmission coefficient

Kinax(Ko) = exp(akg), (15) T,=1 at thekyay, and, as a result, the quantitiBsL and T .

. o are almost zero as mentioned above. It can be seen from this
with =0.5360 andB=1.467. The result of the fit is also figure thatL exhibits a local maximum at=35 andT; is a
shown in Fig. 4. _ “local minimum there. Since the quantiti®sand T,; do not

For a qualitative understanding of the resonant transmisgramatically change aroune=35, the local minimum off;
sion, we estimate thenm., as follows. Equatior(5) can be s due to the existence of the peak of the localized enkrgy

rewritten as On the other hand, although there is a hump.dfetween
d?Q k=1 and 8,T; decreases smoothly with the decrease af
den:‘eXFi_ U, + exp—U,_1) + Ry, (16)  this region of k. Since T, takes large value there arRl

increases rapidly with the decreasexodround«=1 and the
change oflL is counterbalanced by the changeTgfand R,
Ri= (9n,0= dndlexp(=Ug) — 1 +«Uo], (17)  the hump ofL does not have much influence on the shape of

whereR, denotes residual. The frontier soliton transmissionthe-rl nearx=1. We note that the localized waves disappear

coefficientT; is expected to be close to 1 if the resid&glis
small. We approximat&, in Eq. (17) by the incident soliton
and we choose so thatR,=0, where|U| is maximum. We

obtain an approximate expression g,y given by
@
sint? kg = 0.6
KmaXKo) = : —. (18) =L
In(1 + sinkf k) 5
= 04f
In Fig. 4, we compare this approximation fey,,, with the I
numerical result. It can be seen from this figure that the 0.2
numerical result is well fitted by the approximate expression »

(18) whenk,=1.7. The discrepancy for lardg is due to the &5
oversimplification of the approximation.

In order to investigate the localized waves around the har- fiG_ 6. The frontier soliton transmission coefficieh(—), the
monic spring, we obtain the temporal localized enelt§y)  |ocalized energy.(---), the reflected energR(- --) and the energy of

defined by Eq(10) and plot it in Fig. 5 as a function of time  the ripplesT,i(- - -) are plotted against. The wave number of the
7 for k=3 and 30 keepingp=2.5 fixed. The abrupt change incident soliton isky=2.5.
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in k<1 andx>1. The former corresponds to a weak cou-tors in theLC circuit with a capacitor whose capacitance is
pling impurity and the latter corresponds to a heavy masgiven by
impurity as mentioned above. C' = 1/a (20)
It is well known that the Toda lattice can be realized using '
aLC ladder type electrical circujd]. The capacitance of the wherea is a constant corresponding to the spring constant of
capacitor in theL.C circuit depends on the applied voltage the harmonic spring in Eg. (3).
and is given by We have investigated numerically the transmission of a
soliton between two Toda lattices connected by a harmonic
Q(Vy) spring. It is shown that _the transmittance of the soliton can
_— (19 be enhanced by controlling the property of the connector. We
F(Vo) +V-Vo have suggested that our numerical results can be tested by
using the nonlineak.C circuit.

C(V)=

whereF(Vy) and 1Q(V,) are constants which correspond to
the parameters of the Toda sprirgandb in Eq. (3), respec- This work was supported by JSPS and in part by a Grant-
tively, andV, is the bias voltage. We found that our model in-Aid for Scientific Research from the Ministry of Educa-
can be constructed by replacing one of the nonlinear capaciion, Culture, Sports, Science, and Technology.
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