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The transmission of a single soliton is investigated numerically across an interface between two Toda lattices
which are connected by a harmonic spring. We find that a resonant transmission of the soliton occurs when the
spring constant of the harmonic spring is adjusted properly. Furthermore, when the amplitude of the incident
soliton is large, the soliton transmission coefficient exhibits a local minimum which is due to an emergence of
localized waves around the harmonic spring. We propose an experimental test of the results by using a
nonlinearLC circuit.
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In the past decades various aspects of the soliton have
been investigated and the application of the soliton has been
developed on many fields. One of the most important appli-
cations is the optical soliton communication in optical fibers
f1g. In the realistic optical soliton communication system, the
soliton propagates through several fiber segments joined by a
fiber splice and the soliton loses its own energy at the inter-
faces between the fiber segmentsf2g. When a soliton passes
an interface between two segments which support the soli-
ton, the soliton is scattered by the interface and the transmit-
tance of the soliton would shrink.

In this paper, we investigate numerically the transmission
of a soliton across an interface between nonlinear media. We
treat the Toda lattice as a representative nonlinear medium
which supports the propagation of soliton. It should be noted
that the propagation of the soliton in the Toda lattice can be
realized by a nonlinearLC circuit f3,4g and our numerical
results can be tested experimentally as discussed later. We
use a harmonic spring for a connector of the two Toda lat-
tices. For simplicity, we consider two identical Toda lattices.
The harmonic spring is not suited for the propagation of the
soliton and can be interpreted as an impurity. It is known that
localized waves can exist at a light mass impurity or a strong
coupling impurity in a harmonic lattice and the Toda lattice
f5,6g. We show that the localized waves also exist at the
harmonic spring in our model. We try to enhance the trans-
mittance of the incident soliton by controlling the property of
the harmonic spring. It is found that there is a resonant trans-
mission of the soliton for each amplitude of the incident
soliton.

We consider two Toda latticesf7g connected by a har-
monic spring. The Hamiltonian of our model is given by

H = o
n
F pn

2

2m
+ fnsundG , s1d

un = qn+1 − qn, s2d

wherepn and qn are the momentum and displacement of a
particle on siten, respectively, andm is the mass of the
particle.fn is the interaction potential between the particles
on sitesn andn+1 given by

fnsund

=5
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b
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whereK is a spring constant of the harmonic spring,b is a
controlling parameter of the nonlinearity andab represents a
spring constant of the Toda springs.

We introduce dimensionless variables defined by

t = Sab

m
D1/2

t, Pn = S b

ma
D1/2

pn, Qn = bqn, s4d

wheret is the dimensionless time. The equation of motion is
reduced to

d2Qn

dt2 = −
d

dQn
fFnsUnd + Fn−1sUn−1dg, s5d

FnsUnd = 5 exps− Und + Un − 1 for n ø − 1 andn ù 1,

1

2
kUn

2 for n = 0, 6
s6d

wherek=K / sabd andUn=Qn+1−Qn.
At time t=0, we prepare a single-soliton

Un = ulnh1 + v0
2 sech2fk0sn − n0d − v0tgjut=0, s7d

as an incident wavesFig. 1d, wherek0 is regarded as a wave
number of the soliton,v0=sinhk0 and n0 denotes the loca-
tion of the soliton att=0. We setn0!0 so that the incident
soliton is at far left from the harmonic spring. The energy of

FIG. 1. The perspective of an incident soliton on two Toda
lattices connected by a harmonic spring.
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the incident soliton normalized bya/b is given by

E0 = 2ssinhk0 coshk0 − k0d. s8d

When the incident soliton passes the harmonic spring, the
incident wave is divided into three waves: transmitted, re-
flected and localized waves. The transmitted waves consist
of a large soliton at the front and many small waves follow-
ing it; we call them the frontier soliton and ripples, respec-
tively. We use the frontier soliton transmission coefficient
f8,9g given by

T1 = E1/E0, s9d

as a measure of transmission, whereE1 is the energy of the
frontier soliton. In order to investigate the localized waves
around the harmonic spring, we define the temporal localized
energy by

Lstd = o
n=−2

3

hnstd, s10d

where the maximum and minimum lattice numbers are se-
lected so thatLstd does not fluctuate for larget andhnstd is
the normalized energy density given by

hnstd = fPn
2 + FnsUnd + Fn−1sUn−1dg/s2E0d. s11d

As is shown in the following numerical results,Lstd ap-
proaches an asymptotic value for larget and we define a
localized energyL by the asymptotic value ofLstd. We also
define a reflected energyR and an energy of the ripplesTri by
asymptotic values of

Rstd = o
n=left end

−3

hnstd, s12d

Tristd = F o
n=4

right end

hnstdG − T1, s13d

respectively. Since the total energy is a conserved quantity,
the summation of the normalized energy densityhnstd is con-
served and the following sum rule,

T1 + L + R+ Tri = 1, s14d

is satisfied. We investigate these quantities for various sets of
parameters in the following discussion.

We integrate Eq.s5d numerically using a third order bilat-
eral symplectic algorithmf10g. We set integration stepDt
ø0.01 so that total energy does not deviate from the value of
the initial state. We impose fixed boundary conditions at both
ends of entire sites. Since we prepare a sufficiently long lat-
tice and finish the numerical calculation before waves reach
the end of the lattice, the boundary condition does not affect
the results.

In Fig. 2, we show the normalized energy densityhnstd as
a function ofn andt for the spring constant of the harmonic
springk=sad 38.54 andsbd 7.776, keeping the wave number
of the incident solitonk0=2.5 fixed. Figure 2sad shows that
the incident soliton is divided into frontier soliton, ripples,
localized wave and reflected wave. In Fig. 2sbd, since we

chose the spring constantk properly, the incident soliton
completely passes the harmonic spring.

We obtainedT1 for various spring constantsk of the har-
monic spring, keeping the wave numberk0 of the incident
soliton fixed. Figure 3 shows thek dependence ofT1 for
k0=1, 1.5, 2 and 2.5. It can be seen from this figure thatT1
has a maximum as a function ofk. The maximal value is
T1.1; in other words, there are no reflected waves and no
localized waves and the incident soliton completely passes
through the interface. We can regard this as a resonance be-
tween the soliton and the harmonic spring, which occurs at
the spring constant of the harmonic spring chosen properly
for eachk0. It can also be seen from Fig. 3 that whenk0
*1.5, T1 has a local minimum as a function ofk. We show
later that the local minimum is due to emergence of the lo-
calized waves around the harmonic spring. We note that in
the limit of smallk, the particle at site 0 is disconnected from
the other side of the system. In this case the incident soliton
is reflected completely andT1 vanishes atk=0 since the

FIG. 2. The spatiotemporal evolution of energy densityhnstd
which is normalized by total energy.t is dimensionless time. The
wave numberk0 of the incident soliton isk0=2.5. The spring con-
stantsk of the harmonic spring aresad k=38.54 andsbd k=7.776.

FIG. 3. The frontier soliton transmission coefficientT1 as a
function of the spring constantk of the harmonic spring in the
logarithmic scale. The wave numbers of the incident soliton are
k0=1s—d, 1.5s---d, 2s¯d and 2.5s- · -d.
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particle at site 0 behaves as a free boundary condition. On
the other hand, in the limit of largek, the particles at sites 0
and 1 are strongly connected with each other. Since these
two particles behave as one heavy particle,T1 approaches a
finite asymptotic value as can be seen in Fig. 3.

We denote thek at the maximum ofT1 by kmax. Thekmax
depends onk0 and is plotted againstk0 in Fig. 4. It can be
seen from this figure thatkmax increases with the increase of
k0. The numerical result can be well fitted by a stretched
exponential function:

kmaxsk0d . expsak0
bd, s15d

with a=0.5360 andb=1.467. The result of the fit is also
shown in Fig. 4.

For a qualitative understanding of the resonant transmis-
sion, we estimate thekmax as follows. Equations5d can be
rewritten as

d2Qn

dt2 = − exps− Und + exps− Un−1d + Rn, s16d

Rn = sdn,0 − dn,1dfexps− U0d − 1 +kU0g, s17d

whereRn denotes residual. The frontier soliton transmission
coefficientT1 is expected to be close to 1 if the residualRn is
small. We approximateU0 in Eq. s17d by the incident soliton
and we choosek so thatRn=0, whereuU0u is maximum. We
obtain an approximate expression forkmax given by

kmaxsk0d =
sinh2 k0

lns1 + sinh2 k0d
. s18d

In Fig. 4, we compare this approximation forkmax with the
numerical result. It can be seen from this figure that the
numerical result is well fitted by the approximate expression
s18d whenk0&1.7. The discrepancy for largek0 is due to the
oversimplification of the approximation.

In order to investigate the localized waves around the har-
monic spring, we obtain the temporal localized energyLstd
defined by Eq.s10d and plot it in Fig. 5 as a function of time
t for k=3 and 30 keepingk0=2.5 fixed. The abrupt change

betweent.40 and 50 indicates that the soliton passes the
harmonic spring. As can be seen from this figure,Lstd does
not change significantly whent*80 and we conclude that
stable localized waves exist for certain values of parameters
in our model. We note thatLstd for otherk andk0 behaves
similarly. Therefore we can use the asymptotic value ofLstd
as the localized energyL.

We show the localized energyL, the frontier soliton trans-
mission coefficientT1, the reflected energyR and the energy
of the ripplesTri as functions ofk for k0=2.5 in Fig. 6. Since
there is the sum rules14d, the above four quantities are not
independent. The frontier soliton transmission coefficient
T1.1 at thekmax, and, as a result, the quantitiesR, L andTri
are almost zero as mentioned above. It can be seen from this
figure thatL exhibits a local maximum atk.35 andT1 is a
local minimum there. Since the quantitiesR and Tri do not
dramatically change aroundk=35, the local minimum ofT1
is due to the existence of the peak of the localized energyL.
On the other hand, although there is a hump ofL between
k=1 and 8,T1 decreases smoothly with the decrease ofk in
this region of k. Since Tri takes large value there andR
increases rapidly with the decrease ofk aroundk=1 and the
change ofL is counterbalanced by the change ofTri andR,
the hump ofL does not have much influence on the shape of
theT1 neark=1. We note that the localized waves disappear

FIG. 4. The spring constantskmax of the harmonic spring at the
maximum ofT1 sPd are plotted as a function of the wave numberk0

of the incident soliton. The solid curve is the fit by Eq.s15d. The
broken curve is the approximant given by Eq.s18d.

FIG. 5. The temporal localized energyLstd is plotted as a func-
tion of dimensionless timet for k=3s—d and 30s---d. The wave
number of the incident soliton isk0=2.5.

FIG. 6. The frontier soliton transmission coefficientT1s—d, the
localized energyLs---d, the reflected energyRs¯d and the energy of
the ripplesTris- · -d are plotted againstk. The wave number of the
incident soliton isk0=2.5.
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in k,1 andk@1. The former corresponds to a weak cou-
pling impurity and the latter corresponds to a heavy mass
impurity as mentioned above.

It is well known that the Toda lattice can be realized using
a LC ladder type electrical circuitf4g. The capacitance of the
capacitor in theLC circuit depends on the applied voltage
and is given by

CsVd =
QsV0d

FsV0d + V − V0
, s19d

whereFsV0d and 1/QsV0d are constants which correspond to
the parameters of the Toda springsa andb in Eq. s3d, respec-
tively, andV0 is the bias voltage. We found that our model
can be constructed by replacing one of the nonlinear capaci-

tors in theLC circuit with a capacitor whose capacitance is
given by

C8 = 1/a, s20d

wherea is a constant corresponding to the spring constant of
the harmonic springK in Eq. s3d.

We have investigated numerically the transmission of a
soliton between two Toda lattices connected by a harmonic
spring. It is shown that the transmittance of the soliton can
be enhanced by controlling the property of the connector. We
have suggested that our numerical results can be tested by
using the nonlinearLC circuit.
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